Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38673313

RESUMO

BACKGROUND: Low-dose computed tomography (LDCT) increases the early detection of lung cancer. Identifying modifiable behaviors that may affect tumor progression in LDCT-detected patients increases the likelihood of long-term survival and a good quality of life. METHODS: We examined cigarette smoking behaviors on lung cancer stage, progression, and survival in 299 ever-smoking patients with low-dose CT-detected tumors from the National Lung Screening Trial. Univariate and multivariate Cox models were used to estimate the hazard ratio (HR) for smoking variables on survival time. RESULTS: Current vs. former smokers and early morning smokers (≤5 min after waking, i.e., time to first cigarette (TTFC) ≤ 5 min) had more advanced-stage lung cancer. The adjusted HR for current vs. former smokers was 1.3 (95% confidence interval [CI] 0.911-1.98, p = 0.136) for overall survival (OS) and 1.3 (0.893-1.87, p = 0.1736) for progression-free survival (PFS). The univariate hazard ratios for TTFC ≤ 5 min vs. >5 min were 1.56 (1.1-2.2, p = 0.013) for OS and 1.53 (1.1-2.12, p = 0.01) for PFS. Among current smokers, the corresponding HRs for early TTFC were 1.78 (1.16-2.74, p = 0.0088) and 1.95 (1.29-2.95, p = 0.0016) for OS and PFS, respectively. In causal mediation analysis, the TTFC effect on survival time was mediated entirely through lung cancer stage. CONCLUSION: The current findings indicate smoking behaviors at diagnosis may affect lung cancer stage and prognosis.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Fumar , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Fumar/epidemiologia , Prognóstico , Estadiamento de Neoplasias
2.
Genome Med ; 16(1): 22, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317189

RESUMO

BACKGROUND: Although polygenic risk score (PRS) has emerged as a promising tool for predicting cancer risk from genome-wide association studies (GWAS), the individual-level accuracy of lung cancer PRS and the extent to which its impact on subsequent clinical applications remains largely unexplored. METHODS: Lung cancer PRSs and confidence/credible interval (CI) were constructed using two statistical approaches for each individual: (1) the weighted sum of 16 GWAS-derived significant SNP loci and the CI through the bootstrapping method (PRS-16-CV) and (2) LDpred2 and the CI through posteriors sampling (PRS-Bayes), among 17,166 lung cancer cases and 12,894 controls with European ancestry from the International Lung Cancer Consortium. Individuals were classified into different genetic risk subgroups based on the relationship between their own PRS mean/PRS CI and the population level threshold. RESULTS: Considerable variances in PRS point estimates at the individual level were observed for both methods, with an average standard deviation (s.d.) of 0.12 for PRS-16-CV and a much larger s.d. of 0.88 for PRS-Bayes. Using PRS-16-CV, only 25.0% of individuals with PRS point estimates in the lowest decile of PRS and 16.8% in the highest decile have their entire 95% CI fully contained in the lowest and highest decile, respectively, while PRS-Bayes was unable to find any eligible individuals. Only 19% of the individuals were concordantly identified as having high genetic risk (> 90th percentile) using the two PRS estimators. An increased relative risk of lung cancer comparing the highest PRS percentile to the lowest was observed when taking the CI into account (OR = 2.73, 95% CI: 2.12-3.50, P-value = 4.13 × 10-15) compared to using PRS-16-CV mean (OR = 2.23, 95% CI: 1.99-2.49, P-value = 5.70 × 10-46). Improved risk prediction performance with higher AUC was consistently observed in individuals identified by PRS-16-CV CI, and the best performance was achieved by incorporating age, gender, and detailed smoking pack-years (AUC: 0.73, 95% CI = 0.72-0.74). CONCLUSIONS: Lung cancer PRS estimates using different methods have modest correlations at the individual level, highlighting the importance of considering individual-level uncertainty when evaluating the practical utility of PRS.


Assuntos
Estratificação de Risco Genético , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Teorema de Bayes , Estudo de Associação Genômica Ampla , Incerteza , Medição de Risco , Fatores de Risco , Predisposição Genética para Doença
3.
Head Neck ; 46(4): 926-935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38229229

RESUMO

BACKGROUND: Aspirin intake might be inversely associated with head and neck cancer (HNC). Thus, we investigated this relationship within the International Head and Neck Cancer Epidemiology (INHANCE) consortium. METHODS: Four case-control studies within the INHANCE consortium were included (2024 cases, 4196 controls). Study-specific odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression and subsequently pooled with DerSimonian-Laird random-effects model. Nonlinearity of the relationship between duration of intake and HNC was modeled with fractional polynomials. RESULTS: Aspirin was inversely associated with HNC overall (OR = 0.48; 95% CI: 0.26, 0.91). Results for laryngeal cancer were similar (OR = 0.54; 95% CI: 0.30, 0.96). Analysis on duration of intake confirmed findings for HNC overall, showing also inverse associations for oropharyngeal and laryngeal cancer. CONCLUSIONS: This study suggests that aspirin intake may reduce the risk of HNC, driven mainly by decreases in risk for laryngeal and oropharyngeal cancer.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Neoplasias Orofaríngeas , Humanos , Fatores de Risco , Neoplasias Laríngeas/epidemiologia , Neoplasias de Cabeça e Pescoço/epidemiologia , Neoplasias de Cabeça e Pescoço/prevenção & controle , Estudos de Casos e Controles
4.
Cancer Epidemiol Biomarkers Prev ; 33(3): 389-399, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180474

RESUMO

BACKGROUND: Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer. METHODS: We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants. We further evaluated the impact of smoking quantity on lung cancer risk for the variants associated with ever-smoking lung cancer. RESULTS: Five novel independent loci, GABRA4, intergenic region 12q24.33, LRRC4C, LINC01088, and LCNL1 were identified with the association at two or three populations (P < 5 × 10-8). Further functional analysis provided multiple lines of evidence suggesting the variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, light-smokers (packyear ≤ 20), and moderate-to-heavy-smokers (packyear > 20). Different risk patterns were observed for the variants among the different groups by smoking behavior. CONCLUSIONS: We identified novel variants associated with lung cancer in only ever- or never-smoking groups that were missed by prior main-effect association studies. IMPACT: Our study highlights the genetic heterogeneity between ever- and never-smoking lung cancer and provides etiologic insights into the complicated genetic architecture of this deadly cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Fumantes , Estudo de Associação Genômica Ampla , Projetos de Pesquisa , Fumar/efeitos adversos
5.
Cancer ; 130(6): 913-926, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38055287

RESUMO

BACKGROUND: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated. METHODS: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established. The prediction models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the methylation markers, which were then replicated in independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, and transcriptomics and investigation of the potential regulation pathways. RESULTS: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC risk (Bonferroni-corrected p ≤ 1.67 × 10-6 ) were originally identified. Of these, 16 CpGs remained significant in the validation stage (Bonferroni-corrected p ≤ 1.28 × 10-3 ), including four novel CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be involved in regulatory pathways of NSCLC risk were identified. CONCLUSIONS: Sixteen promising DNA methylation markers associated with NSCLC were identified. Changes of the methylation level at these CpGs might influence the development of NSCLC by regulating the expression of genes nearby. PLAIN LANGUAGE SUMMARY: The epigenetic consequences of DNA methylation in lung cancer development are still largely unknown. This study used summary data of large-scale genome-wide association studies to investigate the associations between genetically predicted levels of methylation biomarkers and non-small cell lung cancer risk at the first time. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. These findings will provide a unique insight into the epigenetic susceptibility mechanisms of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Metilação de DNA , Neoplasias Pulmonares/genética , Estudo de Associação Genômica Ampla , Epigênese Genética , Biomarcadores , Ilhas de CpG
6.
Cancer Res ; 84(4): 616-625, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38117513

RESUMO

Cigarette smoke, containing both nicotine and carcinogens, causes lung cancer. However, not all smokers develop lung cancer, highlighting the importance of the interaction between host susceptibility and environmental exposure in tumorigenesis. Here, we aimed to delineate the interaction between metabolizing ability of tobacco carcinogens and smoking intensity in mediating genetic susceptibility to smoking-related lung tumorigenesis. Single-variant and gene-based associations of 43 tobacco carcinogen-metabolizing genes with lung cancer were analyzed using summary statistics and individual-level genetic data, followed by causal inference of Mendelian randomization, mediation analysis, and structural equation modeling. Cigarette smoke-exposed cell models were used to detect gene expression patterns in relation to specific alleles. Data from the International Lung Cancer Consortium (29,266 cases and 56,450 controls) and UK Biobank (2,155 cases and 376,329 controls) indicated that the genetic variant rs56113850 C>T located in intron 4 of CYP2A6 was significantly associated with decreased lung cancer risk among smokers (OR = 0.88, 95% confidence interval = 0.85-0.91, P = 2.18 × 10-16), which might interact (Pinteraction = 0.028) with and partially be mediated (ORindirect = 0.987) by smoking status. Smoking intensity accounted for 82.3% of the effect of CYP2A6 activity on lung cancer risk but entirely mediated the genetic effect of rs56113850. Mechanistically, the rs56113850 T allele rescued the downregulation of CYP2A6 caused by cigarette smoke exposure, potentially through preferential recruitment of transcription factor helicase-like transcription factor. Together, this study provides additional insights into the interplay between host susceptibility and carcinogen exposure in smoking-related lung tumorigenesis. SIGNIFICANCE: The causal pathway connecting CYP2A6 genetic variability and activity, cigarette consumption, and lung cancer susceptibility in smokers highlights the need for behavior modification interventions based on host susceptibility for cancer prevention.


Assuntos
Neoplasias Pulmonares , Produtos do Tabaco , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo , Carcinógenos/toxicidade , Carcinogênese , Fatores de Transcrição , Fumar/efeitos adversos
7.
Pharmacol Res Perspect ; 11(5): e01142, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37787014

RESUMO

Cigarette smoking remains an important health concern and is still a leading cause of preventable mortality. Nicotine is the substance responsible for sustained tobacco use and dependence. Identification of biomarkers underlying nicotine dependence behavior is important to identify people at risk for this dependence. In the present study, we identified biochemical and genetic biomarkers of nicotine dependence detected by the Fagerström Test for Nicotine Dependence (FTDN) in Mexican smokers. The nicotine metabolites nicotine-N'-oxide, trans-3'-hydroxycotinine-glucuronide (3HC-O-Gluc), and nicotine-N-Gluc (Gluc) were useful to differentiate nicotine-dependent from non-dependent subjects (p < .0001) with an area under the curve (AUC) of 0.7818. Genetic variants in CYP2A6, FMO3, and UGT2B7 (rs2431413, rs28363545, and rs7439326, respectively) were associated with nicotine dependence (p = .03, p = .01, p = .01, respectively). Variations in the enzymatic activity of CYP2A6 were associated with altered nicotine-N'-oxide and 3HC-O-Gluc levels. Decreased urinary levels of 3HC-O-Gluc and increased nicotine-N'-oxide were associated with a decrease in the functional activity of CYP2A6. A strong positive correlation was observed between the ratio of urinary 3HC/cotinine, a measure of CYP2A6 activity, and the levels of 3HC-O-Gluc (p < .0001, r = .6835), while a strong negative correlation was observed with nicotine-N'-oxide (p < .0001, r = .6522) in nicotine-dependent subjects. No correlations were observed in non-nicotine-dependent subjects. These data suggest that particular urinary nicotine metabolites and genetic variants involved in nicotine metabolism are useful to identify subjects with nicotine dependence in the Mexican population.


Assuntos
Nicotina , Tabagismo , Humanos , Nicotina/metabolismo , Tabagismo/genética , Fumantes , Marcadores Genéticos , Óxidos
8.
Hum Mol Genet ; 32(18): 2842-2855, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37471639

RESUMO

Pulmonary surfactant is a lipoprotein synthesized and secreted by alveolar type II cells in lung. We evaluated the associations between 200,139 single nucleotide polymorphisms (SNPs) of 40 surfactant-related genes and lung cancer risk using genotyped data from two independent lung cancer genome-wide association studies. Discovery data included 18,082 cases and 13,780 controls of European ancestry. Replication data included 1,914 cases and 3,065 controls of European descent. Using multivariate logistic regression, we found novel SNPs in surfactant-related genes CTSH [rs34577742 C > T, odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.89-0.93, P = 7.64 × 10-9] and SFTA2 (rs3095153 G > A, OR = 1.16, 95% CI = 1.10-1.21, P = 1.27 × 10-9) associated with overall lung cancer in the discovery data and validated in an independent replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.80-0.96, P = 5.76 × 10-3) and SFTA2 (rs3095153 G > A, OR = 1.14, 95% CI = 1.01-1.28, P = 3.25 × 10-2). Among ever smokers, we found SNPs in CTSH (rs34577742 C > T, OR = 0.89, 95% CI = 0.85-0.92, P = 1.94 × 10-7) and SFTA2 (rs3095152 G > A, OR = 1.20, 95% CI = 1.14-1.27, P = 4.25 × 10-11) associated with overall lung cancer in the discovery data and validated in the replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.79-0.97, P = 1.64 × 10-2) and SFTA2 (rs3095152 G > A, OR = 1.15, 95% CI = 1.01-1.30, P = 3.81 × 10-2). Subsequent transcriptome-wide association study using expression weights from a lung expression quantitative trait loci study revealed genes most strongly associated with lung cancer are CTSH (PTWAS = 2.44 × 10-4) and SFTA2 (PTWAS = 2.32 × 10-6).


Assuntos
Neoplasias Pulmonares , Surfactantes Pulmonares , Humanos , Estudo de Associação Genômica Ampla , Pulmão/metabolismo , Genótipo , Surfactantes Pulmonares/metabolismo , Tensoativos/metabolismo , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Catepsina H/genética , Catepsina H/metabolismo
9.
J Thorac Oncol ; 18(8): 1003-1016, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150255

RESUMO

INTRODUCTION: Mosaic chromosomal alterations (mCAs) detected in white blood cells represent a type of clonal hematopoiesis (CH) that is understudied compared with CH-related somatic mutations. A few recent studies indicated their potential link with nonhematological cancers, especially lung cancer. METHODS: In this study, we investigated the association between mCAs and lung cancer using the high-density genotyping data from the OncoArray study of INTEGRAL-ILCCO, the largest single genetic study of lung cancer with 18,221 lung cancer cases and 14,825 cancer-free controls. RESULTS: We identified a comprehensive list of autosomal mCAs, ChrX mCAs, and mosaic ChrY (mChrY) losses from these samples. Autosomal mCAs were detected in 4.3% of subjects, in addition to ChrX mCAs in 3.6% of females and mChrY losses in 9.6% of males. Multivariable logistic regression analysis indicated that the presence of autosomal mCAs in white blood cells was associated with an increased lung cancer risk after adjusting for key confounding factors, including age, sex, smoking status, and race. This association was mainly driven by a specific type of mCAs: copy-neutral loss of heterozygosity on autosomal chromosomes. The association between autosome copy-neutral loss of heterozygosity and increased risk of lung cancer was further confirmed in two major histologic subtypes, lung adenocarcinoma and squamous cell carcinoma. In addition, we observed a significant increase of ChrX mCAs and mChrY losses in smokers compared with nonsmokers and racial differences in certain types of mCA events. CONCLUSIONS: Our study established a link between mCAs in white blood cells and increased risk of lung cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Masculino , Feminino , Humanos , Neoplasias Pulmonares/genética , Aberrações Cromossômicas , Carcinoma de Células Escamosas/genética , Estudos de Coortes , Fumar/efeitos adversos
10.
Chem Res Toxicol ; 36(2): 177-187, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36626330

RESUMO

Cannabis-based products have experienced notable increases in co-usage alongside tobacco products. Several cannabinoids exhibit inhibition of a number of cytochrome P450 (CYP) and UDP glucuronosyltransferase (UGT) enzymes, but few studies have examined their inhibition of enzymes involved in nicotine metabolism. The goal of the present study was to examine potential drug-drug interactions occurring in the nicotine metabolism pathway perpetrated by cannabidiol (CBD) and its active metabolite, 7-hydroxy-CBD (7-OH-CBD). The inhibitory effects of CBD and 7-OH-CBD were tested in microsomes from HEK293 cells overexpressing individual metabolizing enzymes and from human liver tissue. Assays with overexpressing microsomes demonstrated that CBD and 7-OH-CBD inhibited CYP-mediated nicotine metabolism. Binding-corrected IC50,u values for CBD inhibition of nicotine metabolism to cotinine and nornicotine, and cotinine metabolism to trans-3'-hydroxycotinine (3HC), were 0.27 ± 0.060, 0.23 ± 0.14, and 0.21 ± 0.14 µM, respectively, for CYP2A6; and 0.26 ± 0.17 and 0.029 ± 0.0050 µM for cotinine and nornicotine formation, respectively, for CYP2B6. 7-OH-CBD IC50,u values were 0.45 ± 0.18, 0.16 ± 0.08, and 0.78 ± 0.23 µM for cotinine, nornicotine, and 3HC formation, respectively, for CYP2A6, and 1.2 ± 0.44 and 0.11 ± 0.030 µM for cotinine and nornicotine formation, respectively, for CYP2B6. Similar IC50,u values were observed in HLM. Inhibition (IC50,u = 0.37 ± 0.06 µM) of 3HC to 3HC-glucuronide formation by UGT1A9 was demonstrated by CBD. Significant inhibition of nicotine metabolism pathways by CBD and 7-OH-CBD suggests that cannabinoids may inhibit nicotine metabolism, potentially impacting tobacco addiction and cessation.


Assuntos
Canabidiol , Canabinoides , Nicotina , Humanos , Canabidiol/farmacologia , Canabinoides/metabolismo , Canabinoides/farmacologia , Cotinina/metabolismo , Citocromo P-450 CYP2A6/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Células HEK293 , Microssomos Hepáticos/metabolismo , Nicotina/farmacologia , Nicotina/metabolismo
11.
Cancer Epidemiol Biomarkers Prev ; 32(1): 54-65, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36252563

RESUMO

BACKGROUND: Nicotine metabolism is a major factor in nicotine dependence, with approximately 70% to 80% of nicotine metabolized to cotinine in Caucasians. Cotinine formation is catalyzed primarily by CYP2A6, which also converts cotinine to trans-3'-hydroxycotinine (3HC). The goal of the present study was to examine the effects of CYP2A6 deficiency on nicotine metabolism profiles in vivo and the importance of genetic variants in nicotine-metabolizing enzyme genes on urinary nicotine metabolites levels. METHODS: Urine samples from 722 smokers who participated in the Singapore Chinese Health Study were analyzed using UPLC-MS/MS to detect nicotine and eight of its urinary metabolites, and a total of 58 variants in 12 genes involved in nicotine metabolism were investigated in 475 of these subjects with informative genotyping data. RESULTS: Urine samples stratified by the ratio of 3HC/cotinine exhibited a 7-fold increase in nicotine-N'-oxide, a 6-fold increase in nicotine-Glucuronide (Gluc), and a 5-fold decrease in 3HC-Gluc when comparing the lower versus upper 3HC/cotinine ventiles. Significant (P < 0.0001) associations were observed between functional metabolizing enzyme genotypes and levels of various urinary nicotine metabolites, including CYP2A6 genotype and levels of nicotine, nicotine-Gluc, nicotine-N'-oxide and 3HC, UGT2B10 genotype and levels of cotinine, nicotine-Gluc and cotinine-Gluc, UGT2B17 genotype and levels of 3HC-Gluc, FMO3 genotype and levels of nicotine-N'-oxide, and CYP2B6 genotype and levels of nicotine-N'-oxide and 4-hydroxy-4-(3-pyridyl)-butanoic acid. CONCLUSIONS: These data suggest that several pathways are important in nicotine metabolism. IMPACT: Genotype differences in several nicotine-metabolizing enzyme pathways may potentially lead to differences in nicotine dependence and smoking behavior and cessation.


Assuntos
Nicotina , Tabagismo , Humanos , Nicotina/urina , Cotinina , Fumantes , Cromatografia Líquida , Espectrometria de Massas em Tandem , Citocromo P-450 CYP2A6/genética , Genótipo , Glucuronosiltransferase/genética
12.
Drug Metab Dispos ; 51(1): 29-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197312

RESUMO

The primary mode of metabolism of nicotine is via the formation of cotinine by the enzyme CYP2A6. Cotinine undergoes further CYP2A6-mediated metabolism by hydroxylation to 3-hydroxycotinine and norcotinine, but can also form cotinine-N-glucuronide and cotinine-N-oxide (COX). The goal of this study was to investigate the enzymes that catalyze COX formation and determine whether genetic variation in these enzymes may affect this pathway. Specific inhibitors of major hepatic cytochrome P450 (P450) enzymes were used in cotinine-N-oxidation reactions using pooled human liver microsomes (HLMs). COX formation was monitored by ultrahigh-pressure liquid chromatography-tandem mass spectrometry and enzyme kinetic analysis was performed using microsomes from P450-overexpressing human embryonic kidney 293 (HEK293) cell lines. Genotype-phenotype analysis was performed in a panel of 113 human liver specimens. Inhibition of COX formation was only observed in HLMs when using inhibitors of CYP2A6, CYP2B6, CYP2C19, CYP2E1, and CYP3A4. Microsomes from cells overexpressing CYP2A6 or CYP2C19 exhibited similar N-oxidation activity against cotinine, with maximum reaction rate over Michaelis constant values (intrinsic clearance) of 4.4 and 4.2 nL/min/mg, respectively. CYP2B6-, CYP2E1-, and CYP3A4-overexpressing microsomes were also active in COX formation. Significant associations (P < 0.05) were observed between COX formation and genetic variants in CYP2C19 (*2 and *17 alleles) in HLMs. These results demonstrate that genetic variants in CYP2C19 are associated with decreased COX formation, potentially affecting the relative levels of cotinine in the plasma or urine of smokers and ultimately affecting recommended smoking cessation therapies. SIGNIFICANCE STATEMENT: This study is the first to elucidate the enzymes responsible for cotinine-N-oxide formation and genetic variants that affect this biological pathway. Genetic variants in CYP2C19 have the potential to modify nicotine metabolic ratio in smokers and could affect pharmacotherapeutic decisions for smoking cessation treatments.


Assuntos
Cotinina , Nicotina , Humanos , Cotinina/metabolismo , Nicotina/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Cinética , Citocromo P-450 CYP2B6/metabolismo , Células HEK293 , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36231826

RESUMO

AIM: 8-iso-prostaglandin F2α is a biomarker of lipid peroxidation, and one of the most commonly used measures of oxidative stress. It is an established biomarker of lung cancer risk. It is commonly measured by enzyme-linked immunosorbent assay. Given its importance, we developed a stable isotope dilution UPLC-tandem mass spectrometric method for the rapid determination of 8-isoprostane in blood. METHODS: We tested the discriminatory capability of the method in 49 lung cancer patients, 55 benign lung nodule patients detected by chest X-ray, and 41 patients with chronic obstructive pulmonary disease (COPD) or asthma. RESULTS: Significant differences were found in mean 8-isoprostane levels between the three groups (p = 0.027), and post-hoc tests found higher levels in the lung cancer patients than in patients with benign nodules (p = 0.032) and COPD/asthma (p = 0.014). The receiving operating characteristic area under the curve (AUC) was 0.69 for differentiating the lung cancer group from the benign nodule group, and 0.7 for differentiating from the COPD/asthma group. CONCLUSIONS: The UPLC-MS/MS-based method is an efficient analytical tool for measuring 8-isoprostane plasma concentrations. The results suggest exploring its utility as a marker for early lung cancer screening.


Assuntos
Asma , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Biomarcadores , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Dinoprosta/análogos & derivados , Detecção Precoce de Câncer , Humanos , Isótopos , Neoplasias Pulmonares/diagnóstico , Estresse Oxidativo , Espectrometria de Massas em Tandem/métodos
14.
Mol Pharmacol ; 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953090

RESUMO

Exemestane (EXE) is an aromatase inhibitor used to treat hormone-dependent breast cancer. EXE is extensively metabolized, with unchanged EXE and its active metabolite 17-dihydroexemestane (17-DHE) accounting for 17 and 12%, respectively, of total plasma EXE in vivo The major circulating EXE metabolites are the cysteine conjugates of EXE and 17-DHE, and the 17-DHE glucuronide, which together account for 70% of total plasma EXE in vivo The goal of the present study was to examine the inhibition potential of major metabolites of EXE through inhibition assays using aromatase-overexpressing cells and pooled ovarian tissues. Estrone formation was used as a measure of aromatase activity and was detected and quantified using UPLC-MS. EXE-cys, 17ß-DHE, and 17ß-DHE-cys all exhibited inhibition of estrone formation at both 1 µM and 10 µM concentrations, with 17ß-DHE and EXE-cys showing significant inhibition of estrone formation (63% each) at 10 µM. In contrast, 17ß-DHE-Gluc displayed minimal inhibition (5-8%) at both concentrations. In ovarian tissue, EXE-cys and 17ß-DHE showed similar patterns of inhibition, with 49% and 47% inhibition, respectively, at 10 µM. The IC50 value for EXE-cys (16 {plus minus} 10 µM) was similar to 17ß-DHE (9.2 {plus minus} 2.7 µM) and higher than EXE (1.3 {plus minus} 0.28 µM), and all three compounds showed time-dependent inhibition with IC50 shifts of 13 {plus minus} 10, 5.0 {plus minus} 2.5 and 36 {plus minus} 12-fold, respectively. Given its high circulating levels in patients taking EXE, these results suggest that EXE-cys may contribute to the pharmacologic effect of EXE in vivo Significance Statement The current study is the first to examine the major phase II metabolites of EXE (EXE-cys, 17ß-DHE-cys, and 17ß-DHE-Gluc) for inhibition potential against the target enzyme, aromatase (CYP19A1). EXE-cys was found to significantly inhibit aromatase in a time dependent manner. Given its high circulating levels in patients taking EXE, this phase II metabolite may play an important role in reducing circulating estrogen levels in vivo.

15.
Hosp Pharm ; 57(4): 518-525, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35898257

RESUMO

Objective: To determine if a 2-day protocol measuring pharmacokinetic and pharmacodynamic characteristics can demonstrate drug-drug interactions when smoked cannabis is added to orally administered hydrocodone/acetaminophen combination products. Case Summary: A 51-year-old non-Hispanic white male with chronic pain diagnoses participated in a 2-day pilot protocol. The participant attended two 7-hour in-lab days where he received 10 blood draws each day and completed self-administered pain and anxiety surveys. For both days, the participant took his prescribed dose of hydrocodone/acetaminophen (1/2 tablet of 7.5 mg/325 mg combination product) with the addition of 1 smoked pre-rolled marijuana cigarette (labeled as 0.5 g; 22.17% Δ9-tetrahydrocannabinol; 0.12% cannabidiol) on Day 2. Blood specimens were analyzed using mass spectrometry to quantify the difference of plasma hydrocodone levels between Day 1 and Day 2. Results: Compared to Day 1, lower levels of pain and anxiety were reported during Day 2 with the addition of cannabis to oral hydrocodone/acetaminophen. Day 2 pharmacokinetic analysis also revealed more rapid absorption and overall lower levels of hydrocodone in plasma. Discussion: Lower hydrocodone plasma levels in Day 2 may indicate cannabis's effect on metabolism and reduce the risk of opioid toxicity. The quicker absorption rate of hydrocodone could explain lower pain and anxiety scores reported on the second day. Conclusion and Relevance: A 2-day protocol was able to capture differences across time in pharmacokinetic and pharmacodynamic measurements. Larger studies can be designed to better characterize the potential drug-drug interaction of cannabis and opioids.

16.
J Pharmacol Exp Ther ; 382(3): 327-334, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35793834

RESUMO

Exemestane (EXE) is used to treat postmenopausal women diagnosed with estrogen receptor positive (ER+) breast cancer. A major mode of metabolism of EXE and its active metabolite, 17ß-dihydroexemestane, is via glutathionylation by glutathione-S-transferase (GST) enzymes. The goal of the present study was to investigate the effects of genetic variation in EXE-metabolizing GST enzymes on overall EXE metabolism. Ex vivo assays examining human liver cytosols from 75 subjects revealed the GSTA1 *B*B genotype was associated with significant decreases in S-(androsta-1,4-diene-3,17-dion-6α-ylmethyl)-L-glutathione (P = 0.034) and S-(androsta-1,4-diene-17ß-ol-3-on-6α-ylmethyl)-L-gutathione (P = 0.014) formation. In the plasma of 68 ER+ breast cancer patients treated with EXE, the GSTA1 *B*B genotype was associated with significant decreases in both EXE-cysteine (cys) (29%, P = 0.0056) and 17ß-DHE-cys (34%, P = 0.032) as compared with patients with the GSTA1*A*A genotype, with significant decreases in EXE-cys (Ptrend = 0.0067) and 17ß-DHE-cys (Ptrend = 0.028) observed in patients with increasing numbers of the GSTA1*B allele. A near-significant (Ptrend = 0.060) trend was also observed for urinary EXE-cys levels from the same patients. In contrast, plasma and urinary 17ß-DHE-Gluc levels were significantly increased (36%, P = 0.00097 and 52%, P = 0.0089; respectively) in patients with the GSTA1 *B*B genotype. No significant correlations were observed between the GSTM1 null genotype and EXE metabolite levels. These data suggest that the GSTA1*B allele is associated with interindividual differences in EXE metabolism and may play a role in interindividual variability in overall response to EXE. SIGNIFICANCE STATEMENT: The present study is the first comprehensive pharmacogenomic investigation examining the role of genetic variability in GST enzymes on exemestane metabolism. The GSTA1 *B*B genotype was found to contribute to interindividual differences in the metabolism of EXE both ex vivo and in clinical samples from patients taking EXE for the treatment of ER+ breast cancer. Since GSTA1 is a major hepatic phase II metabolizing enzyme in EXE metabolism, the GSTA1*B allele may be an important biomarker for treatment outcomes and toxicities.


Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Alelos , Androstadienos/farmacologia , Androstadienos/uso terapêutico , Inibidores da Aromatase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Citosol/metabolismo , Feminino , Glutationa , Glutationa Transferase/genética , Humanos , Fígado/metabolismo
17.
J Thorac Oncol ; 17(8): 974-990, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35500836

RESUMO

INTRODUCTION: Although genome-wide association studies have been conducted to investigate genetic variation of lung tumorigenesis, little is known about gene-gene (G × G) interactions that may influence the risk of non-small cell lung cancer (NSCLC). METHODS: Leveraging a total of 445,221 European-descent participants from the International Lung Cancer Consortium OncoArray project, Transdisciplinary Research in Cancer of the Lung and UK Biobank, we performed a large-scale genome-wide G × G interaction study on European NSCLC risk by a series of analyses. First, we used BiForce to evaluate and rank more than 58 billion G × G interactions from 340,958 single-nucleotide polymorphisms (SNPs). Then, the top interactions were further tested by demographically adjusted logistic regression models. Finally, we used the selected interactions to build lung cancer screening models of NSCLC, separately, for never and ever smokers. RESULTS: With the Bonferroni correction, we identified eight statistically significant pairs of SNPs, which predominantly appeared in the 6p21.32 and 5p15.33 regions (e.g., rs521828C6orf10 and rs204999PRRT1, ORinteraction = 1.17, p = 6.57 × 10-13; rs3135369BTNL2 and rs2858859HLA-DQA1, ORinteraction = 1.17, p = 2.43 × 10-13; rs2858859HLA-DQA1 and rs9275572HLA-DQA2, ORinteraction = 1.15, p = 2.84 × 10-13; rs2853668TERT and rs62329694CLPTM1L, ORinteraction = 0.73, p = 2.70 × 10-13). Notably, even with much genetic heterogeneity across ethnicities, three pairs of SNPs in the 6p21.32 region identified from the European-ancestry population remained significant among an Asian population from the Nanjing Medical University Global Screening Array project (rs521828C6orf10 and rs204999PRRT1, ORinteraction = 1.13, p = 0.008; rs3135369BTNL2 and rs2858859HLA-DQA1, ORinteraction = 1.11, p = 5.23 × 10-4; rs3135369BTNL2 and rs9271300HLA-DQA1, ORinteraction = 0.89, p = 0.006). The interaction-empowered polygenetic risk score that integrated classical polygenetic risk score and G × G information score was remarkable in lung cancer risk stratification. CONCLUSIONS: Important G × G interactions were identified and enriched in the 5p15.33 and 6p21.32 regions, which may enhance lung cancer screening models.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Casos e Controles , Detecção Precoce de Câncer , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único
18.
Int J Cancer ; 151(4): 553-564, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35404482

RESUMO

Polycyclic aromatic hydrocarbons (PAH) and tobacco-specific nitrosamines (TSNA) metabolism-related genes play an important role in the development of cancers. We assessed the associations of genetic variants in genes involved in the metabolism of PAHs and TSNA with risk of squamous cell carcinoma of the head and neck (SCCHN) in European populations using two published genome-wide association study datasets. In the single-locus analysis, we identified two SNPs (rs145533669 and rs35246205) in CYP2B6 to be associated with risk of SCCHN (P = 1.57 × 10-4 and .004, respectively), two SNPs (EPHX1 rs117522494 and CYP2B6 rs145533669) to be associated with risk of oropharyngeal cancer (P = .001 and .004, respectively), and one SNP (rs4359199 in HSD17B12) to be associated with risk of oral cancer (P = .006). A significant interaction effect was found between rs4359199 and drinking status on risks of SCCHN and oropharyngeal cancer (P < .05). eQTL and sQTL analyzes revealed that two SNPs (CYP2B6 rs35246205 and HSD17B12 rs4359199) were correlated with alternative splicing or mRNA expression levels of the corresponding genes in liver cells (P < .05 for both). In silico functional annotation suggested that these two SNPs may regulate mRNA expression by affecting the binding of transcription factors. Results from phenome-wide association studies presented significant associations between these genes and risks of other cancers, smoking behavior and alcohol dependence (P < .05). Thus, our study provided some insight into the underlying genetic mechanism of head and neck cancer, which warrants future functional validation.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , 17-Hidroxiesteroide Desidrogenases , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , Citocromo P-450 CYP2B6/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Orofaríngeas/genética , Polimorfismo de Nucleotídeo Único , RNA Mensageiro , Fatores de Risco , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
19.
Eur J Med Res ; 27(1): 14, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101137

RESUMO

BACKGROUND: Aberrant Wnt signalling, regulating cell development and stemness, influences the development of many cancer types. The Aryl hydrocarbon receptor (AhR) mediates tumorigenesis of environmental pollutants. Complex interaction patterns of genes assigned to AhR/Wnt-signalling were recently associated with lung cancer susceptibility. AIM: To assess the association and predictive ability of AhR/Wnt-genes with lung cancer in cases and controls of European descent. METHODS: Odds ratios (OR) were estimated for genomic variants assigned to the Wnt agonist and the antagonistic genes DKK2, DKK3, DKK4, FRZB, SFRP4 and Axin2. Logistic regression models with variable selection were trained, validated and tested to predict lung cancer, at which other previously identified SNPs that have been robustly associated with lung cancer risk could also enter the model. Furthermore, decision trees were created to investigate variant × variant interaction. All analyses were performed for overall lung cancer and for subgroups. RESULTS: No genome-wide significant association of AhR/Wnt-genes with overall lung cancer was observed, but within the subgroups of ever smokers (e.g., maker rs2722278 SFRP4; OR = 1.20; 95% CI 1.13-1.27; p = 5.6 × 10-10) and never smokers (e.g., maker rs1133683 Axin2; OR = 1.27; 95% CI 1.19-1.35; p = 1.0 × 10-12). Although predictability is poor, AhR/Wnt-variants are unexpectedly overrepresented in optimized prediction scores for overall lung cancer and for small cell lung cancer. Remarkably, the score for never-smokers contained solely two AhR/Wnt-variants. The optimal decision tree for never smokers consists of 7 AhR/Wnt-variants and only two lung cancer variants. CONCLUSIONS: The role of variants belonging to Wnt/AhR-pathways in lung cancer susceptibility may be underrated in main-effects association analysis. Complex interaction patterns in individuals of European descent have moderate predictive capacity for lung cancer or subgroups thereof, especially in never smokers.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Neoplasias Pulmonares/genética , RNA Neoplásico/genética , Receptores de Hidrocarboneto Arílico/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Genótipo , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Hidrocarboneto Arílico/metabolismo , Via de Sinalização Wnt
20.
Hum Mol Genet ; 31(16): 2831-2843, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138370

RESUMO

Differences by sex in lung cancer incidence and mortality have been reported which cannot be fully explained by sex differences in smoking behavior, implying existence of genetic and molecular basis for sex disparity in lung cancer development. However, the information about sex dimorphism in lung cancer risk is quite limited despite the great success in lung cancer association studies. By adopting a stringent two-stage analysis strategy, we performed a genome-wide gene-sex interaction analysis using genotypes from a lung cancer cohort including ~ 47 000 individuals with European ancestry. Three low-frequency variants (minor allele frequency < 0.05), rs17662871 [odds ratio (OR) = 0.71, P = 4.29×10-8); rs79942605 (OR = 2.17, P = 2.81×10-8) and rs208908 (OR = 0.70, P = 4.54×10-8) were identified with different risk effect of lung cancer between men and women. Further expression quantitative trait loci and functional annotation analysis suggested rs208908 affects lung cancer risk through differential regulation of Coxsackie virus and adenovirus receptor gene expression in lung tissues between men and women. Our study is one of the first studies to provide novel insights about the genetic and molecular basis for sex disparity in lung cancer development.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Pulmonares , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Pulmão , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA